
Start	Your	Own	Open	Source	Project	using	
SourceForge	
By	Liviu	Tudor	

	
	 	

Preface	
	
This	book	is	the	synthesis	of	the	work	that	I	have	carried	out	myself	in	starting	up	
an	open	source	project	and	driving	this	through	sourceforge.net	–	from	concept	to	
implementation	to	making	it	available	on	sourceforge.net	and	then	recruiting	a	team	
of	 enthusiasts	 and	managing	 the	development	 and	 the	 release	process	 from	 there	
on.		
	
It	is	meant	to	help	others	who	are	interested	in	developing	a	project	and	making	it	
available	to	the	community	using	sourceforge.net,	however,	they	might	be	scared	at	
the	prospect	of	what	a	complex	task	this	can	be	become.	
	
The	original	 project	 this	 book	 is	 about	 is	 still	 alive	 on	 SourceForge;	 the	project	 is	
called	“aws-s3-version-mgmt”	and	you	can	check	it	out	for	yourself	on	SourceForge	
by	 visiting	 this	 link:	
https://sourceforge.net/projects/awsversionmgmt/	.	(And	if	you	are	
that	way	inclined,	by	all	means	join	our	community	of	developers	and	contribute	to	
it	too!)		The	book	will	make	often	references	to	various	tools	and	features	offered	by	
SourceForge	 and	 will	 provide	 links	 to	 these	 sections	 on	 the	 above-mentioned	
project	 site.	 So	 be	 warned	 ahead	 that	 I	 an	 un-ashamingly	 promoting	 this	 open-
source	project	 by	 doing	 so,	 but	 ultimately	 it’s	 for	 a	 good	 cause	 as	well	 as	 I	 feel	 it	
provides	a	better	context	for	the	readers	of	this	book.	
	
Why	 SourceForge?	 There	 are	many	 other	 open-source	 incubator	 sites	 out	 there	 –	
github.com	being	one	of	the	most	prominent	ones	at	the	moment	–	however,	having	
been	a	SourceForge	user	for	a	long	time	(I	did	find	myself	many	times	downloading	
and	 using	 components	 hosted	 there!),	 and	 bearing	 in	 mind	 my	 rather	 poor	
knowledge	of	git,	 I	opted	for	SourceForge	when	it	came	to	starting	this	project.	As	
many	 entrepreneurs	 around	 the	 world	 will	 tell	 you,	 when	 it	 comes	 to	 starting	 a	
project,	you	need	to	iterate	quick	and	often,	and	as	such,	you	need	to	start	by	using	
what	 you	know	–	 as	 the	project	 evolves	 you	 can	 start	 looking	 at	 leveraging	 other	
tools	 and	 frameworks,	 but	 to	 start	 with	 choose	 the	 one	 that’s	 going	 to	 get	 you	
quicker	to	the	goalpost.	Hence	SourceForge,	in	my	case.	
	
However,	 a	 lot	 of	 the	 issues	 discussed	 in	 this	 book	 are	 valid	 for	 any	 other	 open	
source	 project	 /	 hosting	 combination;	 yet	 when	 I	 will	 contribute	 my	 first	 open	
source	project	on	github	I	will	quite	like	release	a	new	booklet	on	using	that	for	your	
open	source	project.	
	
As	I	just	mentioned,	this	book	references	one	of	the	open	source	projects	which	I	am	
actively	(still)	working	on	–	as	it	happens	this	is	a	Java	project	and	uses	Maven1	as	a	
build	 tool.	As	 such,	 a	 lot	 of	 the	 configurations	 and	 information	here	 is	 targeted	 at	
similar	 projects	 (Java/Maven	 setup)	 –	 you	 will	 still	 find	 hopefully	 a	 lot	 of	 the	
information	here	useful	even	 if	your	project	 is	not	a	 Java	one	or	not	using	Maven,	

however,	 if	 you	 are,	 you	 will	 find	 examples	 of	 configuration	 pieces	 to	 use	 and	
instructions	on	how	to	achieve	certain	things	for	a	maven-ized	Java	project.	
	
Lastly,	 it’s	 worth	 mentioning	 that	 the	 experience	 of	 bringing	 up	 to	 life	 an	 open	
source	project	is	not	that	far	from	a	startup	–	you	get	to	wear	a	lot	of	hats,	from	the	
initial	idea,	prototyping,	proof	of	concept,	then	managing	the	project	throughout	its	
lifecycle,	 building	 the	 team	of	 developers	who	will	work	 alongside	 you	on	 it,	 help	
and	mentor	them,	listen	to	their	ideas	and	incorporate	them	in	your	roadmap,	plan	
releases,	 assign	 tasks	based	on	 the	strengths	you	have	noticed	 in	your	developers	
and	 finally	 creating	 an	 audience	 (market)	 for	 your	 project	 in	 the	 outside	 world.	
(Potentially	even	providing	support	to	your	users	in	the	outside	world	too.)	So	for	
all	 those	 entrepreneurs	wannabe	who	 I	 see	 strutting	 their	 stuff	 around	Mountain	
View,	read	on,	you	might	find	this	helpful!	
	
	 	

	

Contents	
	
Preface	..	2	
Contents	...	4	
Project	Lifecycle	..	5	
Idea	...	6	
Research	...	9	
Prototyping	..	11	
Publish	on	SourceForge	...	13	
Creating	a	Project	on	SourceForge	...	14	
Project	Metadata	...	18	
Adding	Tools	to	the	SourceForge	Project	..	25	
Mailing	Lists	..	28	

Uploading	the	Project	Source	Code	...	30	
Setup	the	Build	Process	...	32	
Maven-specific	Setup	..	34	
Deployment	..	36	

References	and	Links	...	42	
	
	
	
	
	
	 	

Project	Lifecycle	
	
As	 with	 any	 other	 software	 development	 projects,	 the	 open	 source	 projects	 are	
subject	to	the	same	lifecycle:	
	

1. Idea	
2. Research	
3. Prototype	
4. Functionality	Planning	
5. Alpha/Beta	Versions	
6. Stable	Version	/	Release	
7. Iterate	

	
If	the	project	is	started	from	day	zero	by	a	team	then	you	probably	won’t	deviate	too	
much	from	the	above	high-level	plan	–	and	to	be	honest,	 in	that	case	you	probably	
don’t	need	the	help	of	this	book.	
	
If	however,	you	find	yourself	to	be	a	single	developer	right	at	step	1,	then	this	book	
will	 hopefully	 build	 your	 project	 up	 into	 a	 useful	 one	 for	 the	 open	 source	
community!	
	
		
I	 will	 therefore	 step	 through	 each	 one	 of	 the	 above	 and	 explain	 what	 I	 did	 to	
accomplish	the	task	and	move	on	to	the	next	and	give	pointers	on	how	this	process	
can	be	applied	to	other	projects.	
	
	 	

	

Idea	
	
	
Like	with	many	other	projects,	an	open	source	project	starts	with	an	idea.	This	can	
be	based	on	an	 ingenious	 idea	you	 just	came	up	with	 (time	 travel?)	or	 it	 could	be	
something	as	simple	as	providing	a	different	mean	to	accomplishing	something	for	
which	there	are	already	tools	out	there,	but	you	just	want	to	provide	the	public	with	
alternatives.		
	
Bear	 in	mind	 that	while	 a	 lot	of	 times	we	dream	of	 coming	up	with	an	absolutely	
ground	 breaking	 idea	 and	 providing	 something	 that	 was	 never	 thought	 of,	 these	
ideas	come	 to	us	 rarely,	however,	 there	 is	a	 lot	of	 improvement	 space	 left	 around	
each	 project	 out	 there.	 Even	more,	 the	 open	 source	 community	 needs	 choices,	 no	
one	likes	to	be	anchored	into	a	technology	or	tool	–	we	use	these	because	they	help	
us	achieve	certain	tasks.	We	start	using	them	to	the	point	we	get	comfortable	with	
them	even	 though	 they	might	have	some	major	drawbacks	–	and	at	 that	point	we	
will	prefer	those	tools	and	frameworks	to	others;	as	such,		once	we	reach	that	point	
there	will	 be	 nothing	 to	 convince	 us	 that	 it’s	 better	 to	 use	 emacs	 over	 vi	 or	 vice	
versa!	And	that	is	perfectly	fine,	we	all	have	our	preferences,	and	if	you	are	thinking	
that	 you	 will	 change	 people’s	 habits	 and	 preferences,	 you	 will	 find	 that	 this	 is	 a	
rather	 steep	 hill	 to	 climb	 –	 though	 not	 impossible!	 However,	 I	 advise	 you	 do	 not	
target	 these	users	and	developers	 in	 the	 first	 stages	of	your	project	–	you	need	 to	
look	 at	 new	 adopters,	 in	 the	 above	 example,	 people	 who	 never	 used	 a	 terminal-
based	 text	 editor,	 and	 as	 such	 haven’t	 made	 up	 their	 mind	 about	 the	 whole	 vi-
versus-emacs	 battle.	 These	 are	 the	 guys	who	 are	 open	 to	 exploring	 alternatives	 –	
different	ways	of	 doing	 the	 same	 thing.	 (And	 in	 the	 above	 example,	 if	 you	 look	 at	
nano	this	is	pretty	much	how	this	got	the	traction	it	has	nowadays.)	And	these	early	
adopters	 later	on	can	 turn	 the	attention	of	 “old-timers”	 to	your	project	–	but	we’ll	
get	to	that	later	on.	
	
For	now	just	understand	that	there’s	no	shame	in	this	ecosystem	to	provide	a	new	
implementation	for	a	framework	or	tool	already	“out	there”	–	whether	it	is	the	fact	
that	you	 think	 that	 curl	 can	do	with	 that	 extra	parameter	 in	 the	 command	 line	or	
whether	it’s	the	fact	that	a	certain	command-line	utility	cannot	be	easily	integrated	
in	 scripts.	Bear	 in	mind	 that	due	 to	 the	high	numbers	of	 techies	out	 there,	 if	 your	
idea	comes	from	an	internal	frustration	with	a	particular	tool	(maybe	you	think	to	
accomplish	a	particular	task	it’s	too	of	a	cumbersome	command	line	syntax,	maybe	
it	doesn’t	easily	integrate	with	your	other	tools,	or	maybe	it	is	missing	entirely	the	
functionality	you	want	or	whatever	the	frustration	it	might	be),	there	will	be	quite	
likely	others	out	there	experiencing	the	same!	And	as	such,	your	idea	is	quite	likely	
not	a	silly	one!	
	

So	don’t	let	the	presence	of	other	“similar”	tools	or	framework	out	there	put	you	off	
–	you	came	up	with	an	idea,	and	stick	to	it.	You	would	like	a	tool	that	accomplishes	a	
specific	 task	 in	 a	 specific	 way	 and	 you	 think	 that	 tool	 is	 going	 to	make	 your	 life	
easier	–	so	go	for	it,	that’s	your	idea!	Don’t	think	at	this	stage	if	your	project	will	get	
any	traction	or	any	users	–	in	the	first	stages	of	the	project	you	will	have	to	work	on	
it	alone	as	if	you	are	developing	this	for	yourself	only.		Build	it	and	they	will	come	as	
they	 say	 –	 people	 won’t	 be	 able	 to	 turn	 their	 attention	 to	 your	 project	 until	 it’s	
available	for	them,	and	until	then	they	will	live	happy	in	the	“knowledge”	that	they	
don’t	need	your	tool.		
	
As	Henry	Ford2	geniously	said:	“If	I	had	asked	people	what	they	wanted,	they	would	
have	said	faster	horses”.	Same	here:	people	don’t	know	they	need	your	project	until	
it’s	available	to	them.	As	such,	throughout	the	initial	steps	of	an	open-source	project	
you	will	find	yourself	on	your	own	–	but	don’t	let	this	put	you	off:	you	are	building	
this	tool	or	framework	for	your	own	benefit	at	least!	You	know	that	at	the	end	of	this	
cycle,	when	 the	 first	 version	 is	 available,	YOU	 will	 be	 the	 first	 user	 of	 it,	 so	 your	
work	is	not	going	to	be	in	vain	at	all!	
	
So	once	you	come	up	with	the	idea,	don’t	give	up	–	if	you	think	you,	yourself,	would	
use	a	tool	or	framework	like	that,	then	go	for	it.	
	
In	my	 case	 –	 or	 should	 I	 say	 in	 the	 case	 of	 this	 project	 –	 the	 idea	 came	 from	my	
frustration	 with	 the	 lack	 of	 tools	 and	 UI’s	 that	 Amazon	 is	 offering	 around	 their	
versioning3	feature	 on	 S3.	 As	 I	 had	 explained	 at	 the	 time	 in	 my	 blog	 post4	which	
triggered	 this	 project	 to	 start,	 the	 problem	with	 versioning-enabled	 S3	 buckets	 is	
that	most	(if	not	all)	file	browsers	for	S3	will	only	list	the	most	recent	version	of	the	
bucket,	and	do	not	provide	any	support	for	any	previous	versions.	As	such,	imagine	
that	 you	 have	 100	 files	 that	 are	 updated	 daily	 in	 the	 bucket,	 after	 a	month	 (~30	
days),	 each	 file	 will	 have	 30	 versions	 --	 and	 as	 such,	 the	 total	 number	 of	 objects	
stored	in	the	S3	bucket	will	be	30	x	100	=	3,000	objects.	Out	of	those,	using	any	of	
the	 today's	 browser,	 you	will	 only	 be	 able	 to	 see	 30	 objects	 (the	 latest	 versions).	
Even	more,	deleting	those	30	latest	versions	will	show	in	any	S3	browser	the	bucket	
as	empty,	however,	when	you	 try	 to	delete	 the	bucket,	Amazon	will	 rightly	 report	
the	bucket	as	non-empty	and	you	will	not	be	allowed	to	delete	the	bucket	--	which	
still	 has	29	x	100	=	2,900	objects	 in	 it,	 sitting	 there,	 taking	 space	and	 costing	you	
money.	(Please	note	that	at	the	time	I'm	writing	this,	even	Amazon's	own	web	based	
S3	browser	shows	the	bucket	as	empty	in	this	case!)	
	
Even	more	confusingly,	let's	say	you	have	a	file	abc.txt,	which	has	100	versions,	and	
you	delete	the	 latest	one	(what	actually	happens	behind	the	scenes	 is	S3	creates	a	
new	 empty	 version	 which	 is	 called	 a	 "delete	 marker").	 At	 this	 point,	 the	 file	
"disappears"	 from	 your	 S3	 browser	 and	 you	 are	 convinced	 it's	 deleted.	 A	 few	
months	 later	 you	 create	 a	 new	 file	 called	abc.txt	 again,	 totally	 different	 from	 the	
original	 one.	 At	 this	 point	 this	 new	 file	 inherits	 all	 the	 previous	 versions	 of	 the	
previous	abc.txt	file	even	though	they	are	not	related	--	which	can	cause	confusion!	
	

The	lack	of	UI	(or	any	other	sort)	tool	for	this	makes	a	lot	of	room	for	human	error	
and	confusion	–	and	at	 the	 time	 the	project	was	started	as	well	as	at	 the	 time	 I’m	
writing	 this	 book,	 even	 Amazon’s	 own	web-based	 AWS	 S3	 bucket	 explorer	 didn’t	
address	this	problem.	I	have	checked	with	a	few	of	my	techie	friends,	most	of	them	
weren’t	using	the	S3	versioning	or	they	didn’t	know	of	any	tools.		
	
So	 as	per	my	own	advice	 above,	 I	 thought:	 “OK,	this	 is	not	a	ground-breaking	idea.	
Amazon	offers	API	support	 for	versioning-enabled	buckets,	so	 it’s	not	something	that	
can	be	labeled	‘innovative’	to	put	a	utility	together	and	maybe	there	aren’t	too	many	
users	 out	 there	 using	 that	 functionality.	 But	 it	 will	 save	 me	 lots	 of	 time	 and	
frustration	 having	 a	 tool	 like	 this!”	 And	 that	 was	 the	 point	 where	 the	 idea	
appeared:	 I	 needed	 to	 write	 a	 tool	 to	 assist	 me	 with	 management	 of	 these	 S3	
buckets!	
	
Based	on	my	initial	scoping	of	this	issue,	and	the	fact	that	no	one	seemed	to	use	the	
versioning	feature,	I	have	thought	at	the	time	that	I	am	going	to	be	on	my	own	with	
this	tool	–	no	one	else	was	going	to	use	it	or	need	it,	 let	alone	help	me	work	on	it!	
However,	I	went	ahead	with	this	because	I	needed	it!	
	
	 	

	

Research	
	
	
This	part	 typically	 refers	 to	answering	 the	question:	 “Is	 this	 even	possible?	And	 if	
yes,	 how?”.	 In	most	 cases	 you	will	 find	 yourself	 digging	 through	pages	 on	 the	net	
around	the	subject,	investigating	API’s	and	so	on.	
	
In	my	case	it	was	pretty	straight	forward	–	I	simply	used	the	Amazon’s	SDK	for	Java5	
and	 spent	 a	 bit	 of	 time	 investigating	 what’s	 possible	 and	 what	 not	 in	 terms	 of	
versioning	in	S3.		
	
Typically	this	phase	gets	entangled	quite	a	bit	with	the	“Idea”	phase	–	as	your	idea	
tends	to	develop	and	grow	as	you	do	your	research.		Also,	it	is	possible	that	at	first	
glance	your	idea	might	“shrink”	a	bit	–	as	you	might	find	that	a	few	things	won’t	be	
that	easy	 to	do.	 If	you’re	 tempted	to	shrink	down	your	 idea,	don’t!	Write	down	all	
the	 things	you	wanted	 from	your	 tool/framework	–	and	as	your	 research	goes	on	
and	 you	 find	 that	 some	 of	 these	 will	 be	 quite	 challenging,	 mark	 them	 down	
somehow.	This	will	be	issues	that	you	can	tackle	later	on	when	you	start	looking	at	
planning	the	work	on	it,	but	do	not	cut	on	your	initial	idea	because	of	your	research	
shows	a	huge	leap	that	needs	to	me	made	ahead	to	achieve	certain	tasks!	
	
It	is	a	good	idea	at	this	stage	to	not	only	rely	on	Google	searches	for	your	research	–	
there	 are	 a	 lot	 of	 technical	 forums	out	 there	 and	 I	would	 encourage	 you	 to	 try	 to	
reach	out	to	other	techies	who	might	use	or	need	similar	tools	and	frameworks	to	
you.	Who	 knows,	maybe	 they	 are	 just	 as	 frustrated	 as	 you	 about	 the	 lack	 of	 that	
“something”	out	there	and	you	might	even	find	at	this	early	stage	someone	to	lend	
you	a	helping	hand	in	creating	it!	(I	will	get	back	to	this	point	later	on,	it	tends	to	be	
the	case	with	a	lot	of	open-source	projects	that	you	need	to	get	close	enough	to	that	
first	 release	 for	 developers	 to	 start	 turning	 their	 attention	 to	 your	 project,	 but	
occasionally	you	can	be	pleasantly	surprised	by	 finding	others	who	are	offering	to	
help	right	away!)		
	
Do	not	hesitate	at	all	during	this	stage	to	let	others	know	that	you	intend	to	build	an	
open-source	project	around	this	idea	–	trust	me,	no	one	will	“steal”	your	idea	from	
you!	Even	if	let’s	say	that	you	come	up	with	something	so	good	that	someone	can	see	
right	away	a	commercial	opportunity	in	building	something	similar	and	selling	it	(or	
the	 services),	 trust	me,	 it’s	much	 harder	 to	 transform	 a	 piece	 of	 code	 into	money	
than	you	think:	they	will	have	to	find	funding	and	resources	(developers,	computers,	
networking,	 office	 space	 and	 so	 on)	 on	 their	 side,	 and	 this	 takes	 time!	 By	 which	
point	you’ve	quite	likely	advanced	with	your	project.	And	even	if	they	do	have	all	of	
that	available	for	them	right	away,	they	have	to	overcome	a	major	problem:	the	fact	
that	 they	are	offering	a	paid	service	and	hitting	 “the	market”	with	 it	going	against	

your	free,	open-source	“offering”.	And	it	won’t	be	that	easy	for	them	to	achieve	that	
easily.	(I’m	not	saying	it’s	impossible,	I’m	just	saying	that	your	open	source	project	
will	always	have	a	place	in	the	market	if	you	find	yourself	 in	such	a	sweet	spot,	so	
don’t	worry	 at	 all	 about	 being	 loud	 and	 clear	 and	 open	 about	 this	 project	 idea	 to	
anyone	who	asks!)	
	
It	 might	 be	 the	 case	 that	 some	 techies	 will	 point	 you	 towards	 slightly	 similar	
projects	–	or	might	offer	a	helping	hand	as	I	said.	Or	they	might	discover	this	little	
script	 they	put	 together	ages	ago	when	 they	came	across	something	similar	–	and	
that	might	give	you	that	extra	0.1%	boost	when	you	finally	sit	down	to	write	your	
code.	Be	active	about	your	project	on	all	the	channels	you	normally	use	to	do	your	
daily	job	–	I	find	for	instance	that	LinkedIn	groups	and	stackoverflow.com	are	great	
tools	for	that.	
	
The	outcome	of	 this	 research	phase	should	be	 that	you	have	an	 idea	of	how	to	go	
about	 implementing	 your	 project,	 what	 sort	 of	 functionality	 you	will	 be	 plugging	
into	 it	 and	 what	 tools/frameworks	 you	 need	 to	 use	 as	 well	 as	 what	
tools/frameworks	 to	 keep	 an	 eye	 on.	 (If	 there’s	 something	 similar	 out	 there	 that	
does	something	very	well	why	not	offer	it	yourself	too?)	
	
Once	 this	 is	 done,	 you	 can	 move	 onto	 prototyping	 and	 finally	 starts	 seeing	 your	
project	growing!	
	
	
	 	

	

Prototyping	
	
This	is	the	part	I	personally	enjoy	most	–	probably	same	as	with	most	coders:	sitting	
down	and	writing	code.	You	have	at	this	point	an	idea	of	what	is	possible,	what	is	
easy	and	what	is	hard	to	do.	You	are	finally	sitting	down	and	stringing	code	together	
trying	to	make	the	“easy”	bit	“accomplished”	and	the	“hard”	bit	“possible”.	
	
What	goes	in	your	prototype	is	up	to	you	–	it’s	most	likely	the	very	first	tiny	bit	of	
thought	that	your	idea	came	out	of.	There	is	no	one	who	can	tell	you	what	goes	in	
there	and	what	not,	as	such,	attack	this	at	any	angle	you	want.	Bear	in	mind	though	
that	this	prototype	will	evolve	soon	into	your	alpha	version	–	so	try	to	have	at	least	
one	bit	of	functionality	working.	You	will	find	out	that	as	you	start	working	on	that	a	
few	other	collaterals	crop	up	which	you	will	have	to	implement	as	well	–	and	this	is	
what’s	growing	slowly	your	prototype	into	a	fully-fledged	application	or	framework,	
which	then	can	be	used	by	others	too!	
	
Don’t	bother	at	this	point	with	things	like	source	control,	nightly	integration,	
documentation	and	so	on	–	just	focus	on	writing	the	code,	you	will	get	to	do	all	that	
later	on.	
	
In	my	case,	the	first	problem	I	came	across	was	not	being	able	to	delete	an	S3	bucket	
that	otherwise	looked	empty	in	all	S3	browsers!	So	the	first	bit	of	code	that	I	wrote	
for	this	was	a	“purge	bucket”	bit	of	functionality.	I	simply	wrote	a	function	to	iterate	
through	all	the	versions	in	a	bucket	and	delete	them	from	S3.	Then	once	I	was	done	
with	that	tiny	function,	of	course,	I	thought:	“well,	I	need	to	wrap	it	up	in	an	
executable	program”.	So	out	came	the	main()	function.	Now	since	I	wrote	a	
main()	function,	I	might	just	as	well	accept	a	few	parameters,	so	I’m	not	relying	on	
hardcoded	access	keys	and	bucket	names!	Since	I’m	going	to	do	that	I	might	just	as	
well	provide	a	structured	set	of	command	line	parameters,	something	like	--
bucket=…	or	similar	–	a	syntax	that	most	users	are	familiar	with.	So	before	I	knew	
it	I	plugged	in	the	Apache	Commons	CLI6.	That	then	required	a	bit	of	code	written	
around	building	the	command-line	options,	dealing	with	help	screens,	parsing	
errors	and	so	on.	Before	I	knew	it,	my	simple	requirement	of	purging	an	S3	bucket	
became	a	stand-alone	Java	application,	with	a	nice	syntax	in	the	command	line,	
which	can	be	parameterized	to	suit	anyone	with	an	AWS	account!	
	
At	this	point	it’s	time	to	stop!	(Yup,	you	read	it	correctly!)	It’s	time	to	stop	because	
you	have	grown	your	idea	into	a	prototype:	a	piece	of	code	that	can	be	used	by	
others	to	accomplish	a	tiny	thing,	but	while	small,	it’s	enough	to	prove	that	actually	
your	idea	can	(and	has	begun	to!)	grow	into	a	more	complex	problem.	Sure,	you	will	
have	still	tons	of	functionality	that	you’d	like	to	implement	at	this	stage	and	add	to	
your	project.	But	if	you	got	your	project	into	this	stage	where	someone	else	can	pick	

up	your	code	and	can	use	it	to	achieve	one	of	the	tasks	you	had	in	mind	for	your	
project,	then	you	have	reached	your	goal	of	prototyping:	yes,	it	is	possible	to	do	
what	you	want	to	do	and	here	you	go,	you’ve	just	proved	part	of	it	with	this	bit	of	
code	you’ve	written!	
	
At	this	point,	it’s	time	to	hit	the	“market”	with	it	–	and	this	is	where	the	lifecycle	of	
the	project	begins	to	look	a	bit	different	to	your	standard	one!	
	
	 	

	

Publish	on	SourceForge	
	
If	you	have	completed	your	prototype	and	you	have	some	code	that	“does	stuff”,	it’s	
time	to	publish	this	to	sourceforge.net	and	transform	it	into	a	“proper”	open	source	
project	from	there	on!	Don’t	be	tempted	to	take	the	approach	of	publishing	
everything	after	you	completely	finished	the	project	–	and	here’s	why:	
	

• First	of	all,	you	get	free	source	control	–	whether	you	use	SVN	or	GIT	on	
sourceforge,	you	will	get	a	free	source	code	repository,	full	with	history,	
rollback	and	so	on.	(How	many	times	you	decided	to	do	a	refactoring	of	the	
code	which	then	proved	to	be	rubbish	and	you	wish	you	had	a	previous	
version	to	revert	to	and	start	again?	Well,	once	you	have	a	source	repository	
that	obviously	becomes	possible!)	

• SourceForge	tracks	down	all	the	activity	on	a	project	–	from	commits	to	
source	code	to	tickets	updates,	wiki	and	so	on;	based	on	this	activity	it	
promotes	on	various	parts	of	the	website	projects	–	be	it	“Most	Recently	
Updated	Projects”	or	“Most	Popular”	or	“Active	Projects”.	You	want	
sourceforge	to	start	seeing	a	lot	of	activity	on	your	project	sooner	rather	than	
later	–	and	as	such	occasionally	push	your	project	in	front	of	the	numerous	
developers	who	find	themselves	using	the	website	every	day.		

• Setting	up	the	project	in	sourceforge	provides	you	with	a	central	point	for	
“brain	dumping”	all	of	your	ideas	–	whether	it’s	using	the	wiki,	the	ticketing	
system,	forums	or	any	other	applications.	

• Starting	working	with	sourceforge	in	the	early	stages	of	the	project	also	
allows	you	to	familiarize	yourself	with	certain	features	of	the	site	that	maybe	
you	haven’t	used	before.	I	have	personally	used	a	mix	of	JIRA,	Redmine,	
Bugzilla	and	a	few	other	issue	tracking	systems	before,	so	it	took	me	a	while	
to	get	acquainted	to	sourceforge’s	own	issue	tracking	system.	Same	for	their	
wiki.		

• Last	but	not	least,	doing	so	provides	you	visibility	on	the	web!	Bear	in	mind	
that	Google	indexes	a	website	once	every	couple	of	weeks	maybe	–	quite	
likely	much	more	often	with	something	like	sourceforge	–	so	the	moment	
your	project	is	on	sourceforge,	it	becomes	available	for	Google	to	index.	And	
once	Google	indexes	it,	anyone	searching	for	matters	related	to	your	project	
might	come	across	your	project	on	sourceforge!	It’s	all	good	you	finishing	
your	project	and	then	publishing	it	–	but	then	you	have	to	wait	at	least	2-3	
weeks	for	Google	to	index	it,	then	you	might	have	to	wait	another	couple	of	
weeks	for	Google	to	check	back	make	sure	your	website	hasn’t	disappeared	
in	the	meanwhile	and	from	there	on	to	start	pushing	it	into	its	search	results	
–	this	means	you	can	have	1-2	months	after	your	project	is	released	and	
published	on	sourceforge	(if	you	take	the	approach	“publish	after	release”)	
and	appearing	in	search	results!	Hitting	sourceforge.net	right	away	with	your	

project	means	that	while	Google	and	other	crawlers	are	doing	their	job	
indexing	your	project	you	carry	on	coding	along	on	your	side,	safe	in	the	
knowledge	also	that	your	code	is	stored	in	a	code	repository,	it’s	backed	up	
and	so	on!	

• Last	but	not	least,	publishing	your	project	to	sourceforge	makes	
collaboration	possible	right	away!	Maybe	in	a	week	time	one	of	your	friend	
turns	around	and	says	“hey,	how’s	that	S3	versioning	thing	you	were	working	
on	coming	along?	We	have	decided	to	use	S3	versioning	in	our	app	but	I	still	
haven’t	found	anything	out	there	for	helping	me	with	the	cleanup	–	you	still	
working	on	it?	Do	you	need	a	hand	with	it?”	If	that	happens	and	all	of	your	
source	code	is	still	“safe”	in	your	laptop,	you	cannot	but	say	“well,	errr,	yes,	
I’m	still	working	on	it.	If	you	want	to	help	I	can	give	you	a	tarball	with	the	
sources,	then	you	send	me	back	just	the	files	you	modified….	I	guess	I’ll	have	to	
figure	out	a	way	to	merge	them	with	my	changes	hmmmm….	Or	how	about	we	
spend	some	time	putting	this	somewhere	we	can	both	access	it?”	And	you	end	
up	on	…	sourceforge.net	:)	The	trouble	is,	now	you	have	to	tell	your	friend	to	
wait	a	bit	while	you	put	it	on	sourceforge	–	but	hang	on,	I’m	in	the	middle	of	
finishing	this	big	piece	of	code,	I’ll	do	it	over	the	weekend.	And	trust	me,	I	speak	
from	experience,	your	friend	might	not	be	that	patient	and	you	just	missed	
your	opportunity	of	benefiting	from	a	little	help	from	him	since	after	the	
weekend	he	won’t	be	available	due	to	some	production	outage	or	his	holiday	
coming	up,	or	his	mom	visiting,	or	his	girlfriend’s	birthday	…	and	the	list	can	
go	on!	You	want	to	be	able	when	the	opportunity	arises	for	someone	to	help	
you	to	just	say,	sure	here’s	the	project	on	sourceforge,	give	me	your	
username	and	I’ll	add	you	to	it!		And	publishing	on	sourceforge	right	away	
eliminates	all	these	future	problems	for	you	while	providing	you	with	a	
comprehensive	set	of	tools	for	your	project!	

	
	

Creating	a	Project	on	SourceForge	
	
Publishing	your	project	is	a	pretty	simple	process	and	I’ll	walk	you	through	it	
shortly,	but	first	it’s	worth	noticing	that	from	here	on	you	will	be	wearing	multiple	
hats	and	you’re	moving	out	of	your	comfort	zone	of	being	just	a	developer!	You	
become	the	project	manager,	admin,	marketer,	planner,	recruiter,	developer	and	
tester	all	in	one!	Some	developers	might	find	this	overwhelming	–	it	might	not	be	in	
their	nature,	it	is	after	all	the	eternal	“developer	turning	manager-wannabe”	and	
some	can’t	hack	it!	But	the	first	steps	in	open	source	projects	are	very	similar	to	the	
first	few	months	in	a	startup	–	everyone	is	wearing	multiple	hats	and	everyone	is	
helping	with	everything.	That	“everyone”	unfortunately	in	this	case	is	you	–	so	you	
have	to	become	the	project	manager,	marketing	person,	CTO	and	CEO	in	one	for	a	
little	while	–	in	order	to	see	your	project	come	to	life.	Just	as	in	the	case	of	a	startup,	
your	motivation	is	seeing	your	project	come	to	life	and	start	being	used	in	the	
outside	world	–	and	this	should	be	the	force	that	drives	you	to	accomplish	all	of	
these	tasks	which	are	not	related	really	to	software	engineering	and	development,	

but	are	absolutely	crucial	to	a	project.	If	you	don’t	execute	this	step	and	don’t	set	up	
your	project	in	sourceforge,	it	will	be	a	struggle	to	get	visibility	and	traction	–	makes	
it	more	difficult	to	keep	track	of	releases,	issues	fixed	and	so	on.	
	
Getting	back	to	the	initial	matter,	publishing	a	project	on	sourceforge	is	very	simple	
–	create	an	account	if	you	haven’t	got	one	(don’t	worry,	accounts	are	free!)	–	and	
then	in	the	main	screen	simply	click	on	“Create”:	
	

	
	
This	will	take	you	to	the	pretty	simple	create	project	screen:	
	

	
	
Most	of	 the	options	above	you	can	revisit	at	any	point	once	 the	project	 is	created,	
the	main	part	here	 is	selecting	a	name	for	your	project.	Comes	as	no	surprise	that	
this	name	 is	 supposed	 to	be	 rather	 self-explanatory,	but	what	 is	not	known,	and	 I	
found	out	this	through	my	own	experience	with	sourceforge,	is	that	when	searching	
for	projects	on	sourceforge,	 their	 search	engine	matches	projects	on	project	name	
first	 –	 so	 if	 your	 project	 is	 dealing	with	Amazon’s	 S3	 for	 instance,	make	 sure	 you	
include	“s3”	somewhere	in	the	name.	You	can	use	dashes	to	separate	words	in	the	
project	name	–	for	instance	in	my	case	I	came	up	with	“aws-s3-version-mgmt”	–	
feel	free	to	make	up	your	own	which	includes	a	bit	of	SEO	so	to	speak.	Based	on	this,	
SourceForge	 will	 create	 your	 project	 its	 own	 web	 space,	 using	 the	 format	
http://sourceforge.net/projects/<YOUR PROJECT NAME>	.	In	my	case,	
not	aware	initially	of	the	search	implications	of	sourceforge,	my	first	project	name	
was	 rather	 uninspired	 and	 it	was	 just	aws-version-mgmt	 –	which	 sourceforge	

“flattened”	 to	 “awsversionmgmt”	 so	 the	 url	 for	 the	 project	 was	 created	 as	 :	
http://sourceforget.net/projects/awsversionmgmt/		
	
Also	 note	 that	 automatically	 a	 separate	 project	 website 7 	using	 the	 naming	
http://<PROJECT NAME>.sourceforge.net	 –	 in	 my	 case	 this	 became	
http://awsversionmgmt.sourceforge.net		
	
During	this	step	you	can	also	select	your	project	source	code	repository	as	well	–	I	
personally	 am	very	 comfortable	with	 SVN	and	 I	 chose	 that	 as	my	 first	 repository,	
however,	if	git	or	mercurial	is	your	weapon	of	choice,	go	with	that.	I	strongly	suggest	
you	select	the	“Wiki”,	“Files	and	Stats”	and	“Tickets”	features	too	at	this	stage:	
	

• The	Wiki	will	provide	you	with	a	very	easy	yet	effective	interface	for	brain-
dumping	all	of	your	ideas	about	the	project	for	the	community	to	see.	It	also	
helps	 you	 crystalize	 ideas	 into	 functionality,	 	 so	 it’s	 a	 crucial	 component	of	
your	project	development.	Looking	into	the	future,	it	also	provides	a	common	
place	 for	 your	developers	 to	 express	 their	 design	 /	 architecture	 /	 coding	 /	
features	 ideas,	 and	 when	 that	 moment	 comes	 that	 you	 will	 have	 others	
joining	your	project,	you	want	everything	to	be	set	up	for	them	already.	

• The	ticketing	functionality	allows	you	to	plan	your	project	more	effectively	–	
it’s	 great	 to	 dump	 your	 ideas	 on	 the	wiki	 in	 an	 unstructured	 format	 –	 but	
then	when	you	start	looking	at	which	one	of	those	are	ready	for	“production”,	
it	helps	to	have	an	organized	way	of	doing	so.	Your	ideas	from	the	wiki	will	
ultimately	grow	to	become	tickets	in	the	ticketing	system	–	these	tickets	will	
then	 be	 assigned	 to	 versions/releases/milestones	 as	 your	 project	 moves	
forward	and	it	helps	you	see	at	any	point	how	far/close	you	are	from	making	
a	release.		

• “Files	and	Stats”	is	absolutely	vital	for	your	projects	–	while	you	might	not	be	
interested	 in	the	stats	 that	 tell	you	how	many	users	have	downloaded	your	
app,	 you	 are	 very	 interested	 in	making	 the	 app	 available	 for	 download!	 So	
you	need	this	more	than	anything	else!	

	
As	I	said	before	though,	don’t	worry	about	not	selecting	everything	that	you	need	–	
you	can	at	any	point	revisit	your	web	space	setup	and	add	or	remove	components	to	
it	(like	tickets,	wiki	etc).	
	
Once	 you	 create	 your	 project	 you	 will	 start	 receiving	 email	 notifications	 from	
sourceforge	as	the	features	you	have	selected	are	made	available	to	you.	Please	be	
aware	that	certain	 features	might	take	a	while	to	be	made	available	–	occasionally	
you	might	 have	 to	 wait	 1-2	 hours	 for	 sourceforge	 to	 set	 that	 up	 for	 you.	 Just	 be	
patient	and	wait	for	the	confirmation	emails:	you	are	beginning	to	take	ownership	of	
this	project	and	as	such	you	need	to	start	wearing	multiple	hats	to	help	your	project	
come	to	life!	As	a	tip,	one	thing	that	I	found	that	is	made	available	pretty	much	right	
away	 is	 the	Wiki,	 so	 if	 you	 have	 selected	 other	 features	 that	 might	 take	 time	 to	

become	available,	while	waiting	for	that,	start	setting	up	your	Wiki	and	do	a	brain-
dump	of	all	of	your	ideas	on	it!	
	
Once	your	project	is	created,	you	will	become	automatically	the	project	admin	–	so	
you	have	a	free	reign	of	changing	the	project	as	you	see	fit	or	adding	tools	to	it.	It’s	
now	time	to	start	setting	up	your	project!	 	You	will	be	given	access	to	a	shiny	new	
Project	Admin	screen,	which	will	look	something	like	this:	
	

	
	

Project	Metadata	
	
First	thing	I	advise	you	to	do	is	to	set	up	your	project	metadata	–	log	into	your	admin	
section	 (see	 above)	 to	do	 so	 and	 select	 to	 update	 the	project	metadata	 –	 this	will	
open	a	screen	like	the	following:	
	

	
	
Most	of	 the	details	set	 in	 this	screen	are	being	presented	 in	the	project	web	space	
page	that	visitors	would	see	when	they	hit	your	project	–	so	it	is	important	that	you	
make	 the	 information	 in	 this	 relevant	 and	 easy	 on	 the	 eye.	 As	 such	 I	 definitely	
recommend	 you	 choose	 an	 icon	 for	 your	 project	 –	 1	 image	 says	more	 than	 1,000	
words	right?	Set	your	“Homepage”	to	the	project	website	(see	discussion	about	web	
space	vs.	website	 in	 the	 footnotes)	–	you	will	get	 to	edit	 that	website	 later	on,	but	
make	sure	it’s	set	for	now.	Then	ensure	things	like	the	short	summary	and	the	full	
description	are	phrased	such	that	they	explain	clearly	what	your	project	is	trying	to	
accomplish.	 I	 would	 suggest	 here	 to	 stick	 to	 something	 similar	 to	 the	 “elevator	
pitch”,	 that	 is	typically	a	good	format	for	this	section	–	more	details	can	always	be	
offered	in	the	wiki	or	the	project	website.	
	
If	you	use	Twitter	and	or	Facebook	–	at	this	stage	I	would	suggest	you	go	ahead	and	
fill	 in	YOUR	details	regarding	these	2	social	media	environments;	I’m	guessing	you	
are	proud	of	your	project	and	as	such	you	will	be	tweeting	and	posting	on	facebook	
about	it.	If	your	project	becomes	that	big	that	it	requires	its	own	entities	in	the	social	
media	 space,	 then	 at	 that	 point	 you	 can	 decide	 to	 set	 those	 up	 and	 update	 these	

pages	to	reflect	so	–	but	in	the	initial	stage	you	want	to	concentrate	on	implementing	
your	project,	not	on	spending	time	managing	social	media!		
	
There	 is	 also	 the	 subject	 of	 “support	 page”	 –	 this	 really	 depends	 on	 the	 type	 of	
project	 you	 are	 going	 to	 implement	 –	 perhaps	 it	 makes	 sense	 for	 you	 to	 offer	
support	 after	 all!	 Other	 projects	 might	 not	 need	 such	 a	 feature	 –	 however,	 in	 all	
cases	 I	 advise	 you	 select	 at	 this	point	 your	 “support”	 offering	 to	be	wiki:	 you	will	
simply	dump	all	the	knowledge	and	insights	about	your	project	on	the	wiki.	You	are	
in	 the	 early	 stages	 of	 your	 project	 and	 cannot	 spend	 your	 valuable	 time	 at	 this	
moment	 into	 telling	 a	 user	 how	 to	 set	 their	 classpath	 or	 what’s	 the	 shortcut	 in	
Eclipse	 to	 invoke	 your	main	 class.	Offer	 the	 information	on	 the	wiki	 and	don’t	 let	
“support”	 tickets	 at	 this	 point	 interrupt	 you	 –	 if	 you	 get	 prompted	 for	 assistance,	
direct	 the	users	to	the	wiki	at	 this	stage	or	engage	 in	an	email	conversation	 if	you	
think	that	they	do	have	a	valid	point.	Once	you	will	have	a	stable	project	and	a	team	
with	 you,	 you	 can	 start	 looking	 at	 offering	 support	 –	 be	 it	 through	 the	 ticketing	
system,	mailing	lists,	forums	and	so	on.	For	now	though,	stick	to	the	simple	stuff.	
	
Oh,	one	last	thing,	please	make	sure	your	project	status	is	“Active”	–	no	one	has	ever	
downloaded	projects	which	are	no	longer	active	or	supported	by	the	developers	and	
you	don’t	want	your	project	to	be	perceived	as	that	since	you’re	just	starting	on	it!	
	
Having	finished	with	your	project	metadata	there	is	another	must-do	step,	which	to	
me	 still	 falls	 under	 project	 meta-data,	 however,	 the	 sourceforge	 folks	 called	 it	
“Categorization”:	
	

	
	

This	bit	allows	you	to	define	a	few	more	key	points	about	your	project	–	things	like	
labels	which	 help	 define	 your	 project	 (yup,	 these	 are	 used	 by	 their	 search	 tool!),	
what	sort	of	topics	does	it	fall	under	(is	it	a	filesystem-oriented	application,	does	it	
deal	with	networking	and	so	on),	databases	used,	programming	languages,	OS	and	
so	on.	All	of	these	are	important	for	targeting	your	developer	audience	–	these	are	
people	who	you	might	want	to	either	use	your	tool	or	join	your	team	(or	both!),	so	
it’s	important	you	set	this	information	to	correctly	categorize	your	application	such	
that	it	reaches	the	right	people.		
	
Somehow	in	this	set	of	meta-data	that	you	have	to	set	up,	there	are	2	sections	which	
I	feel	are	somehow	misplaced:	
	

• Intended	Audience	 –	 This	 helps	 SourceForge	 get	 this	 project	 in	 front	 of	 the	
relevant	audience	on	the	site,	as	such	make	sure	you	include	all	the	possible	
users	of	your	framework/tool:	is	it	just	sysadmins?	Is	it	only	Java	developers?	
Or	 can	 it	 be	 extended	 to	project	managers	 too?	You	 can	always	 revisit	 this	
section	 –	 and	 in	 fact	 as	 your	 project	 grows	 you	 might	 have	 to!	 –	 but	 it’s	
always	 good	 to	have	 in	 your	mind	 (and	 in	here)	 an	 idea	of	who	you	might	
want	to	try	out	your	app	first!	

• Development	 Status	 –	 This	 informs	 the	 audience	 where	 you	 are	 with	 your	
project.	 As	 you	 are	 creating	 this	 project	 you	 will	 be	 in	 stage	 “1-Planning”	
however,	this	stage	appears	on	the	project	web	space,	so	as	you	advance	your	
project	please	please	please	make	sure	you	keep	this	up	to	date!	It	is,	after	all,	
a	known	fact	that	users	are	easily	put	off	by	projects	which	are	in	pre-alpha,	
or	beta	mode	–	whereas	a	 “Production/Stable”	attracts	more	users,	 since	 it	
means	you	already	have	a	release	out	there!	Don’t	worry	too	much	about	it	at	
this	stage,	just	make	a	mental	note	that	you	will	have	to	revisit	this	section	as	
you	advance	your	project	through	its	lifecycle.	

	
One	important	though	not	major	aspect	of	the	project	in	the	categorization	screen	is	
also	the	licensing	of	your	project!	After	all	you	are	offering	your	project	for	free	to	
the	 world	 and	 you	 want	 to	 make	 it	 clear	 to	 everyone	 that	 you	 adhere	 to	 some	
standard	licenses	known	in	the	community	already	(be	it	GNU,	Apache	or	something	
else).	I	personally	prefer	the	Apache	license	–	it’s	widely	spread	and	understood	and	
I	 somewhat	 find	 it	 natural	 to	use	when	 I’m	using	Apache	 tools	 as	well	 during	 the	
build	(like	maven	or	ant	for	instance).	However,	please	select	whichever	is	right	for	
you	 –	 though	make	 sure	 you	 reference	 the	 same	 license	 in	 your	 project	 build	 file	
later	on!	
	
Last	but	not	least,	on	the	same	idea	that	an	image	is	worth	more	than	1,000	words,	I	
strongly	advise	you	to	provide	a	screenshot	of	your	project	–	if	your	project	has	a	UI,	
then	it	should	be	pretty	clear	what	your	screenshot	to	contain.	In	the	case	of	a	web-
based	project,	 just	 take	 a	 screenshot	 of	 the	browser.	 If	 it’s	 a	 command-line	utility	
take	 a	 screenshot	 of	 the	 Terminal	 (or	 Command	 Prompt)	 window.	 If	 it’s	 just	 a	
framework,	it	can	get	a	bit	tricky:	how	do	you	take	a	screenshot	of	a	library?	In	that	

case	 I	would	 advise	 you	 take	 a	 screenshot	 (terminal	 or	 in	 your	 IDE)	 of	 your	 unit	
tests	passing	–	if	your	naming	convention	is	pretty	good,	then	at	a	glance	this	should	
show	the	user	what	sort	of	calls	can	be	made	to	your	library	based	on	the	unit	tests	
names!	
	
Having	 filled	 in	 all	 the	 metadata	 for	 the	 project,	 here’s	 a	 preview	 of	 how	 this	
metadata	will	contribute	to	the	first	impression	users	will	have	when	visiting	your	
project	web	space:	
	

	
	
As	you	can	see	every	little	bit	counts	–	you	will	find	that	projects	which	are	missing	
meta	 or	 information	 struggle	 to	 attract	 developer	 and	 user	 attention	 and	 build	
traction.	Put	yourself	 in	their	shoes:	it’s	 like	offering	your	customers	to	buy	a	Mac,	
but	the	only	information	you’re	offering	them	is	a	picture	of	a	cardboard	box	and	a	
price,	 no	 technical	 specs,	 no	 photos	 of	 the	 product,	 no	 mention	 about	 software	
versions	 included	 and	 so	 on.	 The	 more	 info	 you	 offer	 about	 your	 project	 to	 the	
public,	where	you	include	it	in	your	project	meta	and	description,	or	offer	it	on	the	
project	website,	 the	more	confidence	you	build	 in	your	user	and	developer	base	–	
and	the	more	likely	it	becomes	to	build	traction.		
	
Now	have	a	 look	by	comparison	with	the	 following	(I	have	hidden	the	project	and	
developer	 details	 since	 this	 is	 not	 a	 case	 of	 “name	 and	 shame”	 but	 rather	 just	
showing	by	comparison	2	projects	with	and	without	metadata	filled	in):	

	

	
	
Now	looking	at	this,	ask	yourself	realistically:	 for	a	project	with	no	description,	no	
explanation,	 no	 files	 to	 download,	 and	 which	 has	 been	 created	 in	 2007	 (6	 years	
ago!!!)	but	is	still	in	Planning	stage	–	how	much	confidence	does	that	inspire	to	you?	
Would	you	work	on	this	if	the	guys	running	this	project	will	approach	you	and	say	

“hey,	we	could	do	with	a	pair	of	hands,	wanna	get	 involved?”.	 (As	a	 side	note,	 the	
project	website	link	doesn’t	work	either!)		
	
The	above	is	pretty	much	a	“dead	project”	–	maybe	the	people	who	started	it	are	still	
working	on	it,	but	they	will	struggle	terribly	to	find	another	developer	to	join	their	
ranks	 and	help!	 So	unless	 they	 can	put	 in	 the	 effort	 to	 take	 the	project	 out	 of	 the	
planning	stage,	have	some	code	and	some	information	available,	this	project	is	going	
to	be	spiraling	down:	because	there	is	no	traction	all	the	work	falls	on	you	and	you	
only,	because	of	that	you	get	more	and	more	things	to	be	done,	because	of	that	you	
are	making	less	and	less	progress	every	day	to	the	point	where	you	look	ahead	and	
there	is	such	a	long	road	to	your	first	release	that	it’s	demoralizing	to	the	point	you	
probably	give	up	and	abandon	it.		
	
On	the	other	hand,	a	bit	of	effort	put	into	defining	your	project	clearly,	supplying	a	
bit	 of	 information	 and	 visuals	 can	 go	 a	 long	way	 –	 such	 that	 the	 first	 impression	
doesn’t	put	off	people,	on	the	contrary!	
	
	 	

	

Adding	Tools	to	the	SourceForge	Project	
	
I’ve	mentioned	earlier	on	that	I	would	suggest	you	choose	at	least	Wiki,	Tickets	and	
Files	 and	 Stats	 from	 the	 initial	 “Create	 Project”	 screen	 –	 if	 you	 chose	 not	 to,	 as	
mentioned,	 you	 can	 revisit	 that	 decision	 at	 any	 point	 from	 the	 Admin	 screen	 by	
going	to	the	Tools	section	in	the	menu:	
	

	
	
This	will	open	up	a	screen	which	allows	you	 to	add	a	whole	set	of	applications	 to	
your	project	to	assist	you	with	your	project	planning	and	development.	At	this	point	
I	strongly	recommend	you	install	the	apps	mentioned	above	(if	you	haven’t	done	so	
at	project	create	time)	and	also	add	the	following	to	your	project:	
	

• MySQL	Databases	–	 if	your	project	relies	on	a	database,	you	will	most	 likely	
need	this,	so	sourceforge	hosts	your	mysql	databases	

• Mailing	Lists	 –	 I	 found	 this	 to	 be	 a	 very	 effective	way	 of	 communicating	 to	
both	your	developers	and	your	users,	and	as	such	I	suggest	you	use	it.	As	and	
when	your	project	grows	and	you	decide	to	offer	support	to	your	user	base,	
you	can	use	something	like	SourceForge’s	“Support”	app,	until	then	I	suggest	
you	set	up	a	mailing	list	and	use	regular	email	for	that.	(I	will	come	back	to	
setting	up	the	mailing	list	later	on).	

• If	however	you	prefer	a	web-based	communication	tool	to	email	based,	you	
can	set	up	the	“Discussion”	app	as	well	–	which	allows	you	ultimately	to	build	
a	forums	section	for	your	project	and	interact	with	users	and	developers	that	

way.	I	personally	prefer	the	mailing	lists,	but	that’s	just	a	personal	preference	
rather	than	a	recommendation.	

• You	 can	 also	 add	 the	 “Summary”	 app	 –	 this	 simply	 adds	 a	 button	 labeled	
“Summary”	 in	 the	 admin	 toolbar	 which	 takes	 you	 straight	 to	 the	 project	
summary	page	–	 this	 is	 the	page	 shown	above,	which	 all	 visitors	 see	when	
looking	 at	 your	 project.	 This	 tool	 offers	 an	 easy	way	 to	 quickly	 view	what	
your	 changes	 look	 like	 when	 you’re	 updating	 the	 project	 metadata	 /	
description	/	screenshots	etc	–	simply	make	the	changes	and	save	them	then	
click	on	Summary	to	get	an	idea	right	away	of	what	your	changes	look	like.	

• Also	 feel	 free	 to	add	 the	 “Reviews”	app	–	do	not	be	 fooled	by	 the	confusion	
here:	 app	 reviews	 are	 enabled	 by	 default	 in	 sourceforge,	 this	 app	 doesn’t	
enable	that	for	you,	it	simply	gives	you	an	admin	interface	into	viewing	and	
managing	 the	reviews	given	 to	your	project.	 (The	reviews	 functionality	 is	a	
very	useful	one	as	it	allows	you	to	receive	feedback	from	the	community	–	I	
strongly	encourage	you	to	pay	close	attention	to	the	feedback	given	to	your	
project,	 since	 a	 bad	 review	means	 a	 user	 had	 a	 bad	 experience	 with	 your	
project	 and	your	goal,	with	 the	open	source	project,	 is	 to	make	users’	 lives	
easier	not	more	frustrating.	Reach	out	to	the	user	who	gave	you	the	review,	
find	out	what	the	issue	is	and	fix	it	–	while	the	bad	review	might	stay	there	
the	 same	 user	 might	 come	 back	 with	 an	 awesomely	 positive	 follow-up	
review.	And	having	a	follow-up	review	only	shows	to	other	users	that	you	are	
committed	 to	 this	 project	 –	 thus	 increasing	 the	 confidence	 level	 in	 your	
project.)	

• Note	 that	 sourceforge	 offers	 also	 a	 “Blog”	 tool	 as	 well	 and	 you	 might	 be	
tempted	to	add	this	as	well	to	the	application.	At	this	point	I	would	suggest	
you	don’t!	Here’s	why:	blogs	take	a	while	to	get	visibility	on	the	net	–	if	you	
have	 a	 personal	 blog	 already,	 you	 are	 better	 off	 blogging	 there	 about	 this	
project,	 future	 designs,	 features	 and	 so	 on	 –	 and	 that	 blog	 post	 will	 reach	
your	existing	audience	 right	away.	 If	 you	set	up	a	blog	on	sourceforge,	 you	
will	find	yourself	having	to	maintain	now:	

o Your	personal	blog	(if	you	have	one)	
o The	project	wiki	
o The	project	website	
o The	project	blog	
o (Optionally)	maintain	any	social	media	feeds	you	have	to	mention	the	

project	regularly	in	order	to	increase	its	visibility.		
o Tickets	on	sourceforge	
o Any	mailing	list	you	might	have	on	sourceforge	
o (obviously)	the	code	

	
These	tasks	can	become	overwhelming	at	some	point	–	and	potentially	depressing,	
when	 you	 find	 yourself	 updating	 more	 web	 content	 than	 code!	 As	 such	 I	 would	
strongly	suggest	you	don’t	give	into	temptation	at	this	stage	–	if	you	reach	version	3	
of	your	project	and	you	have	at	that	point	at	least	3-4	other	developers,	you	can	then	
add	the	Blog	app	to	your	project	since	in	between	the	few	of	you	it’s	much	easier	to	

get	out	a	blog	post	once	a	month	or	so.	(Again,	bear	in	mind	that	a	blog	which	hasn’t	
been	updated	in	months	can	turn	users	into	skeptics	as	it	might	suggest	the	project	
is	no	 longer	 active	–	no	one	 in	 the	open	 source	 community	 likes	 inactive	projects	
since	 it	 typically	 means	 if	 there’s	 something	 wrong	 with	 the	 project	 you	 got	
nowhere	to	turn	for	help!)	
	
For	now	I	suggest	you	stick	to	these	applications	only	–	as	you	can	see,	if	you	need	
any	others	you	can	add	them	to	the	project	at	any	point,	for	now	though,	I	suggest	
you	keep	 them	to	a	minimum	necessary,	as	you	have	 for	a	while	 to	maintain	both	
the	code	and	the	project	infrastructure	and	manage	the	project	and	you	don’t	want	
to	end	up	being	spread	too	thinly	over	too	many	things!	However,	you	do	want	to	set	
up	a	foundation	which	would	make	developer	onboarding	down	the	line	very	easy	–	
such	 that	 the	 source	 repository	 is	 ready,	 information	 is	 on	 the	 wiki,	 roadmap	 is	
planned	in	tickets	and	so	on.	
	
	 	

	

Mailing	Lists	
	
While	it’s	true	you	won’t	need	the	mailing	list	facility	really	until	you	get	developers	
to	 join	your	project,	 I	 suggest	you	add	this	 to	your	project	right	away	–	 for	a	very	
simple	reason:	it	takes	sourceforge	anywhere	in	between	2	to	4-6	hours	to	finalize	
the	setup	of	a	mailing	list!	So	in	foresight	of	having	everything	ready	for	when	the	
first	developer	joins	in,	I’d	suggest	you	set	it	all	up	now.	
	
Start	simple	again	–	build	just	a	simple	“developers”	mailing	list,	and	once	it’s	ready	
add	yourself	to	it.	You	will	be	the	administrator	for	it	and	I	suggest	a	few	settings	for	
your	list:	
	

• Set	it	up	such	that	all	user	registration	requires	you	(the	admin)	to	approve	it	
–	 this	 helps	 with	 preventing	 spam	 as	 well	 as	 you	 will	 be	 notified	 initially	
every	time	a	new	developer	 joins,	so	you	can	have	a	clear	 idea	at	any	point	
who	 is	 joining	 your	 list.	 Maybe	 you	 want	 to	 reach	 out	 to	 each	 subscriber	
individually,	welcome	them	to	the	project	–	if	you	do	this,	it	might	be	worth	
while	 to	have	a	default	 email	 template	 for	 this!	Or	maybe	you	 just	want	 to	
email	 them	to	 find	out	 if	 they	are	a	developer	or	a	user	of	your	project	–	 if	
you	notice	at	some	point	a	mix	of	developers	and	users	on	your	list	it	might	
be	then	the	time	to	create	a	separate	list	for	just	the	users	and	separate	them	
from	 the	developers!	 (Users	will	 typically	be	 interested	 in	how	 to	use	your	
project,	they	might	ask	for	features	or	for	help	in	setting	up	–	developers	on	
the	 other	 hand	 will	 quite	 likely	 raise	 design	 questions,	 discuss	 about	 a	
particular	unit	test	failing	–	things	that	are	not	relevant	to	your	users.)	

• Also	make	sure	you	do	NOT	 allow	emails	 from	non-subscribers	–	 if	you	do	
that,	 all	 you	need	 is	 for	a	 spammer	 to	get	access	 to	your	 list	 email	 address	
and	then	your	list	will	be	filling	up	shortly	with	spam.	(Remember	that	all	of	
the	 emails	 on	 this	 list	 are	 indexed	 and	 archived	 by	 sourceforge	 and	 the	
archives	can	be	browsed	on	the	web!	As	such	a	list	full	of	spam	will	decrease	
the	 confidence	 in	 your	 project,	 since	 people	 will	 think	 that	 there	 is	 no	
“administrator”	guarding	the	project!)	

• Depending	on	the	kind	of	emails	you	expect	to	be	sent	around	on	this	email	
list,	 set	 a	 decent	 max	 email	 size	 in	 the	 “General	 Options”	 settings,	 under	
“Maximum	length	in	kilobytes	of	a	message	body”	–	sourceforge	offers	you	the	
choice	 to	 select	 “0”	 for	 “no	 limit”	 but	 I	 advise	 against	 that,	 since	 it	 simply	
gives	your	subscribers	 the	chance	 to	send	huge	attachments	around,	which	
can	be	a	waste	of	storage	and	bandwidth	(bear	 in	mind	 these	emails	get	 in	
turn	broadcasted	to	all	subscribers	–	some	of	which	might	have	filters	set	on	
their	inboxes	not	to	accept	emails	bigger	than	XYZ!).	I	find	the	default	40Kb		
can	 be	 a	 bit	 restrictive	 (especially	 when	 dealing	 with	 rich	 text	 format	 or	
HTML),	 so	 I	 suggest	 you	 look	 somewhere	 around	 64Kb	 –	 100Kb.	 Though,	
depending	on	your	project,	other	values	might	be	suitable	for	you.	

	

The	rest	of	the	default	settings	for	the	mailing	lists	I	found	to	be	ok,	but	feel	free	to	
tweak	it	here	and	there	if	you	need	to.	
	
One	last	thing,	as	I	said,	 it	can	take	sourceforge	a	few	hours	to	create	your	mailing	
list	–	so	first	just	proceed	to	setting	up	the	list	and	then	I’d	advise	you	to	allow	it	24	
hours	before	you	go	to	setting	up	the	rest	of	the	options	described	above.	This	way,	
by	the	time	you	get	to	making	changes	to	the	configuration	you	will	be	100%	sure	
that	the	list	and	all	the	components	around	it	has	been	set	up	and	finalized.	
	
	 	

	
	

Uploading	the	Project	Source	Code	
	
Having	warn	your	project	manager/admin	hat	for	a	little	while	and	finished	setting	
up	your	project	 in	sourceforge,	 it’s	time	now	to	become	a	sysadmin	/	devops	for	a	
little	 while	 and	 finally	 upload	 your	 code	 into	 sourceforge!	 I	 will	 assume	 for	 the	
purpose	of	this	exercise	that	you	went	ahead	with	Subversion	–	as	I	explained,	this	is	
the	 reason	 why	 I	 stuck	 with	 sourceforge	 myself,	 since	 SVN	 is	 my	 first	 choice	 in	
source	control	(for	now).	
	
SourceForge	creates	a	blank	repository	 for	you	–	as	with	all	SVN	repositories,	you	
will	have	 to	 create	 the	trunk/	 ,	branches/	 and	tags/	 directories	 first.	 (If	 you	
are	 not	 familiar	with	 this,	 have	 a	 look	 at	 the	 SVN	 book	 here:	 http://svnbook.red-
bean.com/en/1.7/svn.reposadmin.create.html).	 Once	 you	 have	 created	 the	 basic	
structure,	follow	the	steps	in	the	same	link	above	to	import	your	code	into	trunk/	-
-	this	is	finally	when	you	make	your	code	available	to	the	open	source	community!	
	
Make	 sure	 you	 only	 import	 your	 sources	 –	 in	 other	words	 perform	 a	mvn	 or	 ant	
clean	or	similar	and	get	rid	of	all	 the	output	generated	by	your	build.	 (No	need	 to	
store	your	jar	files	or	generated	libs	in	SVN,	as	and	when	you	make	a	release	you	can	
put	these	in	the	Files	section!)	
	
One	thing	 is	worth	mentioning	here	–	 I	personally	use	svn+ssh	–	 I	have	generated	
my	own	ssh	key	and	uploaded	it	into	sourceforge	to	use	with	each	project	I	work	on	
there.	 	 Sourceforge	 used	 to	 offer	 svn	 access	 over	 just	 standard	 HTTPS,	 however,	
having	 not	 used	 that	myself	 for	 a	while	 I	 don’t	 think	 this	 is	 possible	 anymore.	 As	
such,	 you	 are	 strongly	 advised	 to	 set	 yourself	 up	 an	 ssh	 key	 in	 sourceforge	 –	 this	
article	 on	 SourceForge’s	 own	 wiki	 should	 help	 with	 that:	
https://sourceforge.net/apps/trac/sourceforge/wiki/Subversion%20client%20ins
tructions	 	 as	 well	 as	 this	 one:	
https://sourceforge.net/apps/trac/sourceforge/wiki/SSH%20keys		
	
One	 thing	 is	worth	mentioning	here:	 if	 you	are	using	SVN	+	SSH,	 there	 is	 a	 config	
switch	you	might	need	to	attend	to	for	your	svn;	this	is	only	needed	if	you	encounter	
a	message	like	the	following	every	time	you	use	the	svn	command	line:	
	
	$	svn	update	
At	revision	xyz	
Killed	by	signal	15.	
$	
	
(The	important	bit	being	the	“Killed	by	signal	15”!)		

	
To	 suppress	 that	 message,	 edit	 your	 ~/.subversion/config	 file	 and	 look	 for	 the	
section	[tunnels]	which	might	look	something	like	this:	
	
###	Section	for	configuring	tunnel	agents.	
[tunnels]	
###	Configure	svn	protocol	tunnel	schemes	here.		By	default,	only	
###	the	'ssh'	scheme	is	defined.		You	can	define	other	schemes	to	
###	be	used	with	'svn+scheme://hostname/path'	URLs.		A	scheme	
###	definition	is	simply	a	command,	optionally	prefixed	by	an	
###	environment	variable	name	which	can	override	the	command	if	it	
###	is	defined.		The	command	(or	environment	variable)	may	contain	
###	arguments,	using	standard	shell	quoting	for	arguments	with	
###	spaces.		The	command	will	be	invoked	as:	
###			<command>	<hostname>	svnserve	-t	
###	(If	the	URL	includes	a	username,	then	the	hostname	will	be	
###	passed	to	the	tunnel	agent	as	<user>@<hostname>.)		Here	we	
###	redefine	the	built-in	'ssh'	scheme	to	avoid	an	unfortunate	
###	interaction	with	the	"ControlMaster	auto"	feature	(for	
###	details,	see	Debian	Bug	#413102):	
ssh	=	$SVN_SSH	ssh	-o	ControlMaster=no	
###	If	you	wanted	to	define	a	new	'rsh'	scheme,	to	be	used	with	
###	'svn+rsh:'	URLs,	you	could	do	so	as	follows:	
#	rsh	=	rsh	
###	Or,	if	you	wanted	to	specify	a	full	path	and	arguments:	
#	rsh	=	/path/to/rsh	-l	myusername	
	
All	 that	 is	 needed	 is	 to	 add	 a	 `-q`	 (quiet	 mode)	 option	 to	 ssh	 –	 so	 change	 the	
highlighted	line	something	like	this:	
	
ssh	=	$SVN_SSH	ssh	–q	-o	ControlMaster=no	
	
And	that	should	do	it.	
	
At	 this	 point,	 having	 imported	 your	 prototype	 code	 into	 source	 forge,	 you	 have	 a	
point	 in	 svn	 to	 always	 rollback	 to,	 should	 any	 changes	 you	 make	 later	 on	 prove	
unsatisfactory	in	the	future.		Unfortunately	this	task	doesn’t	stop	here!	
	
	
	 	

	

Setup	the	Build	Process	
	
Having	 uploaded	 the	 code	 it	means	 you	 have	 offered	 your	 prototype	 code	 to	 the	
open-source	community,	however,	this	doesn’t	necessarily	mean	that	you	are	ready	
to	onboard	new	developers!	There	are	a	few	things	you	need	to	adjust	to	make	that	
a	much	easier,	streamlined	process:	
	

• Build	process:	it’s	all	good	your	code	running	fine	in	your	IDE,	but	how	about	
other	 developers?	 Can	 you	 just	 force	 everyone	 to	 use	 the	 same	 setup	 as	
yourself?	Let’s	say	you	use	Eclipse	and	an	emacs	user	turns	up	–	then	what?	
You	just	tell	them	they	can’t	join	unless	they	install	Eclipse?	It’s	important	at	
this	stage	to	start	thinking	about	how	your	project	is	going	to	be	built	–	use	a	
tool	 that	 doesn’t	 commit	 anyone	 to	 any	 IDE	 –	 be	 it	 ant,	 make,	 maven	 or	
whatever	 is	 appropriate	 for	 your	 project.	 If	 you’re	 programming	 in	 Java,	
maven	seems	to	be	pretty	much	the	standard	nowadays	–	however,	ant	is	not	
too	far	behind.	So	put	together	a	build	file	for	your	project	and	test	it,	make	
sure	your	project	builds	correctly	then	finally	add	the	build	file	to	SVN.	Now	
should	any	emacs	user	decide	to	join	the	project,	all	you	have	to	do	is	point	
them	at	the	pom.xml	or	the	build.xml	or	whatever	your	build	file	is.	As	a	
suggestion,	if	you	go	with	Java,	I	suggest	nowadays	you	go	with	maven	–	even	
though	 I	 am	 still	 a	 beginner	 at	 that,	 I	 do	 find	 it	 much	 easier	 to	 manage	 a	
project	 using	 it,	 and	 it	 plugs	 straight	 into	 Eclipse,	 IntelliJ	 and	 the	 likes.	
However,	 that’s	 just	my	 suggestion	 –	 as	 long	 as	 you	 use	 a	 build	 tool	 that’s	
IDE-independent	you	should	be	good.	You	can	also	take	the	approach	“I’d	like	
to	use	tool	XYZ,	however	I	don’t	know	it	that	well	but	I	know	tool	ABC”	–	in	that	
case	 I	 suggest	 you	 start	with	 ABC	 and	 use	 that	 in	 the	 beginning;	 once	 you	
have	 a	 few	 developers	 joining	 your	 project,	 you	 can	 delegate	 the	 task	 at	
migrating	from	ABC	to	XYZ	to	one	of	them!	

• Code	style:	we	all	have	our	preferred	ways	of	writing	code	(does	the	bracket	
go	on	 the	same	 line	as	 the	method	name	or	new	 line,	 camel	case	or	capital	
case	and	so	on),	and	as	such	to	you	it	seems	very	easy	to	write	and	read	your	
own	 code.	 Other	 developers	 might	 have	 different	 preferences	 though	 to	
yours	and	as	such	working	with	your	code	might	be	a	bit	difficult	for	them.	So	
having	uploaded	the	prototype	code,	it’s	now	time	to	think	about	what	code	
style	will	your	project.	You	can	take	the	approach	that	since	it’s	your	project,	
everyone	 should	 use	your	 code	 style	 –	 however,	 that’s	 not	 in	 the	 spirit	 of	
collaboration	 and	 open	 source,	 and	 even	 more,	 it	 might	 put	 certain	
developers	 off,	 if	 your	 code	 style	 is	 rather	 unique.	 I	 strongly	 suggest	
therefore	that	you	select	a	coding	standard	that	is	well	known	on	the	net	–	be	
it	the	Oracle	Java	coding	conventions8,	or	Apache	conventions	or	something	
else.		Even	if	developers	looking	to	join	your	project	will	find	these	standards	
not	as	natural	as	 their	own,	 they	will	be	much	more	 likely	 to	use	 it,	on	 the	
basis	that	it	is	a	well	established	and	known	standard	rather	than	your	own	
one.	Once	 you	decide	on	 a	 code	 style,	 use	 a	 tool	 like	Checkstyle9	or	 similar	

and	 plug	 it	 into	 the	 build	 process	 to	 ensure	 this	 code	 style	 is	 met.	 This	
enables	all	developers	 to	run	a	coding	standard	check	when	they	build	and	
test	 the	 code	 –	 and	 as	 such	 address	 any	 issues	 with	 their	 code	 not	 being	
inline	with	the	coding	style	you	have	chosen.	Be	sure	to	run	the	tool	against	
your	own	code	too	and	fix	any	such	issues	and	commit	them	back	into	SVN	–	
having	done	 that	you	now	have	a	point	 in	 time	where	you	know	that	all	of	
your	code	is	written	100%	in	line	with	the	coding	style	you	have	chosen.	

• Code	quality	standards:	 you	know	your	code	and	you	have	ben	coding	 for	a	
while,	and	as	such	you	know	how	to	protect	yourself	from	infinite	loops	and	
the	likes,	but	who	is	to	guarantee	that	all	developers	who	will	be	joining	your	
project	know	all	these?	You	should	expect	a	mix	of	language	and	technology	
proficiencies	 from	 the	 dev’s	 looking	 to	 join	 in	 –	 it’s	 not	 uncommon	 for	
beginners	 to	 join	 open-source	 projects,	 looking	 to	 develop	 their	 skills.	 As	
such	you	need	 to	 set	up	 some	code	quality	 standards	 checks	as	part	of	 the	
build	process	–	 if	you	use	 java	there	are	a	 few	plugins	and	tasks	 for	maven	
and	ant	which	I	recommend	strongly	you	use:		

o FindBugs10	
o PMD11	
o CPD	(Copy	Paste	Detector)	–	part	of	PMD		

Set	these	up	in	your	build	file	to	automatically	generate	some	reports	and	signal	to	
developers	any	potential	issues	with	the	code.	FindBugs	and	PMD	are	very	good	at	
finding	things	like	unused	variables,	infinite	loops	and	misused	design	patterns.	CPD	
will	signal	piece	of	identical	code	used	throughout	your	project	–	when	that	happens	
typically	it’s	a	sign	you	need	to	review	your	code	and	refactor	it	a	bit.	
	
At	 this	 step,	having	established	your	code	 is	bugs-free	and	 in	 line	with	 the	coding	
standards	you	set	up,	I	suggest	you	go	through	all	of	the	source	files	and	update	your	
documentation	and	comments	 in	 the	code	such	that	 it’s	easier	 for	anybody	else	 to	
understand	 your	 project’s	 code.	 If	 you’re	 a	 java	 coder,	 this	means	 ensuring	 every	
method	and	member	is	javadoc’d	–	and	if	you	are	using	Checkstyle	in	your	project,	
you	 can	 have	 checkstyle	 verify	 that	 this	 is	 the	 case	 and	 warn	 you	 when	 you	 are	
missing	 comments.	 (If	 you	 are	 using	 java	 it	 is	 important	 to	 have	 your	 javadoc	
complete	and	up-to-date	because	later	on,	we	will	be	publishing	all	of	the	javadoc’s	
on	the	project	website	–	as	you	will	see	later	on!)	
	
When	setting	up	the	project	build	file,	don’t	forget	to	reference	your	project	license	
in	 it	 –	 maven	 has	 dedicated	 support	 for	 this,	 by	 using	 a	 construct	 like	 this	 for	
instance	(if	you’re	using	maven	as	your	build	tool)	in	order	to	reference	the	Apache	
license:	
<licenses>
 <license>
 <name>The Apache Software License, Version
2.0</name>
 <url>http://www.apache.org/licenses/LICENSE-
2.0.txt</url>
 <distribution>repo</distribution>

 <comments>A business-friendly OSS
license</comments>
 </license>
</licenses>
Though	 similar	mechanisms	are	 available	 for	 other	build	 tools	 –	 just	 check	which	
one	applies	to	you.	It’s	always	a	good	idea	to	add	your	license	to	your	build	file	–	in	
most	cases	this	will	be	inserted	somewhere	in	the	deliverables	/	release	files,	such	
that	even	if	someone	doesn’t	visit	the	project	website	to	check	the	license	but	end	up	
downloading	 your	 file	 (from	 a	 mirror	 site	 perhaps?)	 can	 still	 figure	 out	 your	
licensing	model	from	the	deliverables	and	be	encouraged	to	use	your	project	based	
on	that.		
	

Maven-specific	Setup	
	
If	you	are	working	on	a	java	project	and	using	maven	as	your	build	tool,	there	are	a	
few	other	 issues	 you	 are	 encouraged	 to	 add	 to	 your	pom.xml	 file,	which	will	 help	
later	on	with	your	project	setup:	
	
First	of	all	make	sure	you	fill	in	the	basic	information	in	your	pom	about	the	project:	
set	 the	<name>	of	 the	project	 to	correspond	to	 the	name	you	gave	your	project	 in	
sourceforge,	 the	 <description>	 I	 suggest	 you	 set	 to	 the	 same	 one	 you	 filled	 in	
sourceforge	 too.	 The	<url>	 you	will	 have	 to	 set	 up	 to	 the	 url	 of	 your	 project	web	
space	–	e.g.	https://sourceforge.net/projects/awsversionmgmt/		
	
Next	set	up	the	<organization>	element	in	the	pom	–	this	should	be	you	to	start	with	
and	feel	free	to	unashamingly	promote	your	personal	website	in	there:	after	all	this	
is	your	work!	Something	like	this	will	work:	
	
<organization>	
	 <name>Liviu	Tudor</name>	
	 <url>http://liviutudor.com</url>	
</organization>	
	
It’s	worth	 setting	up	 the	<scm>	 element	 as	well	 –	 this	will	 help	 you	 later	 on	with	
things	 like	 automated	 deployments	 and	 so	 on.	 If	 you	 are	 using	 subversion	 on	
sourceforge,	your	<scm>	should	look	something	like	this:	
	
<scm>	
	 <connection>scm:svn:https://svn.code.sf.net/p/awsversionmgmt/code/trun
k/</connection>	
	 <developerConnection>scm:svn:https://svn.code.sf.net/p/awsversionmgmt/
code/trunk/</developerConnection>	
	 <url>http://svn.code.sf.net/p/awsversionmgmt/code/</url>	
</scm>	
	

(Obviously	replace	awsversionmgmt	with	your	project	Unix	name	in	the	above.)	
	
If	 you	 have	 set	 up	 the	 “Tickets”	 app	 in	 your	 sourceforge	 project,	 then	 it’s	 worth	
adding	 the	 <issueManagement>	 element	 to	 your	 pom	 too,	 which	 should	 look	 like	
this:	
	
<issueManagement>	
	 <system>sourceforge</system>	
	 <url>http://sourceforge.net/p/awsversionmgmt/tickets/</url>	
</issueManagement>	
	
I	strongly	advised	you	earlier	on	to	select	“Files	and	Stats”	as	one	of	the	tools	to	be	
added	 to	 your	 project	 setup	 –	 if	 you	 haven’t	 added	 yet	 to	 your	 project,	 please	 go	
ahead	and	do	it	now.		Once	you	do	it,	you	can	set	up	your	<distributionManagement>	
in	your	pom	too	–	which	later	on	will	help	you	with	automated	deployments:	
	
<distributionManagement>	
	 <repository>	
	 	 <id>sf-net-repository</id>	
	
	 <url>scp://shell.sf.net/home/frs/project/a/aw/awsversionmgmt/maven<
/url>	
	 </repository>	
</distributionManagement>	
	
(We	 will	 revisit	 shortly	 the	 <distributionManagement>	 setup	 when	 we	 get	 to	 the	
project	site	–	but	for	now	this	should	do.	One	thing	worth	noticing	here	is	the	way	
the	 file	 system	 is	 split	up	 in	 subdirectories	–	 first	based	on	 the	 first	 letter	of	your	
project	–	a	in	the	case	of	awsversion	management	–	then	based	on	the	first	2	letters	–	
aw	 in	this	case	–	and	finally	the	 full	name	–	so	a/aw/awsversionmgmt	 ;	you	will	
have	to	adapt	this	path	according	to	your	own	project	name.)	
	
Last	but	not	least,	add	yourself	to	the	developers	list:	
	
<developers>	
	 <developer>	
	 	 <id>livt</id>	
	 	 <email>me	AT	liviutudor	DOT	com</email>	
	 </developer>	
</developers>	
	
As	people	will	start	paying	attention	to	your	project	and	want	to	join	in	you	can	add	
them	 to	 this	 list	 –	 such	 that	 they	 appear	 in	 the	 automatically	 generated	 project	
reports	(we’ll	get	to	that	bit	later).	
	

If	you	have	set	up	your	mailing	 list	already,	 it’s	worth	adding	 that	 to	your	pom	 in	
<mailingLists>;	sourceforge	doesn’t	offer	a	mechanism	to	subscribe	and	unsubscribe	
to	the	list	by	sending	emails	to	specific	addresses,	so	just	include	the	mailing	list	in	
<subscribe>	and	<unsubscribe>,	same	as	you	would	with	<post>:	
	
<mailingLists>	
	 <mailingList>	
	 	 <name>Developers	List</name>	
	 	 <subscribe>awsversionmgmt-
developers@lists.sourceforge.net</subscribe>	
	 	 <unsubscribe>awsversionmgmt-
developers@lists.sourceforge.net</unsubscribe>	
	 	 <post>awsversionmgmt-developers@lists.sourceforge.net</post>	
	
	 <archive>https://sourceforge.net/mailarchive/forum.php?forum_name=aws
versionmgmt-developers</archive>	
	 </mailingList>	
</mailingLists>	
	
(Again,	replace	the	links	and	the	email	addresses	with	your	own.)	
	
		

Deployment	
	
The	 purpose	 of	 most	 open-source	 software	 projects	 (on	 SourceForge	 and	
otherwise)	is	to	provide	some	tool	or	libraries	or	framework	the	user	can	download	
and	use.	 In	 the	case	of	 Java	projects	 this	 typically	refers	 to	a	bunch	of	classes	–	 in	
most	 cases	 grouped	 together	 in	 a	 jar	 file.	 (Typically	 these	 are	 referred	 to	 as	
deliverables	or	binaries.)	This	file	is	normally	generated	by	your	build	process	–	be	it	
ant,	maven	or	some	other	tool.		
	
In	fact	let	me	rephrase	that:	this	has	to	be	generated	by	your	build	process!	What	I	
mean	by	that	is	the	fact	that	you	need	a	build	process	which	automates	most	of	the	
tasks	 –	 including	 generating	 these	binaries;	 rather	 than	having	 them	packaged	by	
some	manual	process.	A	manual	process	requires	the	person	building	the	packages	
to	remember	a	set	of	steps,	each	one	with	their	particularities.	Since	you	are	going	to	
set	up	 the	build	process,	 these	steps	would	probably	 stick	 in	your	mind	very	well	
and	you	might	argue	that	you	can’t	possibly	forget	them.	Also	you	would	argue	that	
you	could	put	it	on	the	project	wiki	–	and	that’s	true,	you	can!	However,	imagine	that	
your	project	develops	enough	traction	to	get	the	attention	of	a	few	developers	–	and	
they	might	 or	might	not	pay	 attention	 to	 the	wiki	 page	or	 they	might	 even	 forget	
some	of	the	steps	involved.	And	in	an	open-source	environment	you	can’t	really	take	
the	approach	of	“I’ll	be	the	only	one	performing	builds”	–	or	if	you	do	you	will	find	
that	you	end	up	consuming	a	lot	of	your	time	performing	admin	tasks	(i.e.	creating	a	
release	 and	 uploading	 it)	 rather	 than	 concentrating	 on	 implementing	 and	 coding	

your	project!		There	are	lots	of	articles	out	there	who	explain	why	this	is	so	I’m	not	
going	 to	 stress	on	 this,	 but	 just	 enough	 to	 state	 that	you	have	 to	 tailor	your	build	
process	such	that	it	produces	all	the	binaries	somewhere	in	some	directory.	
	
By	now	you	should	have	“installed”	on	your	SourceForge	project	the	“Files	and	Stats”	
add-on	 –	 as	 I	 explained	 earlier	 on	 this	 gives	 you	 2	 powerful	 features	 for	 your	
project:	

• The	“Stats”	module	provide	you	(and	your	project	visitors)	with	some	basic	
statistics	 about	 the	 number	 of	 downloads,	 recommendations,	 things	 like	
shares	on	social	media	channels	and	so	on	

• The	 “Files”	 module	 provides	 you	with	 a	 storage	 /	 deployment	 /	 download	
area	where	you	can	publish	 files	and	make	them	available	 for	download	by	
your	users.	This	is	the	area	that	you	need	to	configure	your	project	to	deploy	
your	binaries	to.	Once	a	file	is	uploaded	into	the	“Files”	section	of	the	project,	
the	 “Download”	 button	 automatically	 gets	 updated	 to	 offer	 a	 one-click	
download	of	the	latest	uploaded	file	in	this	section.	

For	 example,	 in	 the	 case	 of	 the	aws-s3-version-mgmt	 project,	 having	 just	 released	
version	1.0.0	of	the	project	(which	resulted	in	aws-version-mgmt-1.0.0.one-jar.jar	file	
to	 be	 uploaded	 in	 the	 “Files”	 section),	 the	 “Download”	 button	 automatically	 gets	
updated	to	point	to	this	file:	
	

	
	
Needless	to	point	out,	this	is	a	very	convenient	feature	for	users	of	your	project,	who	
in	most	cases	don’t	want	to	navigate	through	lots	of	pages	to	download	your	project,	
but	rather	want	to	download	it	quickly	and	start	using	it	right	away.	(If	you’re	like	
me,	then	you	are	probably	used	to	this	pattern:	download	the	software,	install	it	and	
run	it	and	only	if	it	doesn’t	work	–	or	doesn’t	work	the	way	I	thought	it	should	–	go	
and	consult	the	wiki/manual/documentation/etc.)		
	
However,	this	feature	has	a	few	implications:	

• If	your	application	consists	of	a	few	deliverables,	then	you	need	to	find	a	way	
to	 group	 them	 into	 one	 single	 file	 –	 which	 would	 then	 appear	 on	 the	
download	button.	This	means	that	if	your	binaries	consist	of	a	few	files,	you	
need	 to	package	 them	 together	before	deployment	 (use	 something	 like	 tar,	
zip	etc).	

• The	 last	 file	 that	 gets	 uploaded	 to	 the	 file	 section	 has	 to	 be	 the	 “main”	
deliverable.	This	means	that	if	during	your	deployment	process	you	deploy	a	
few	files	(for	instance	if	you’re	generating	a	jar	with	the	sources,	another	one	
with	the	javadocs	and	another	one	with	the	compiled	java	classes),	you	want	

to	make	sure	the	last	file	you	deploy	is	the	one	that	users	can	download	and	
run	your	application	from	it	right	away	(in	this	case	 it	will	be	the	compiled	
java	classes	packaged	in	a	jar	file).	

	

Packaging	
	
I’m	sure	whichever	build	tool	you	are	using	there	are	options	to	choose	from,	but	if	
maven	is	your	build	tool,	I	have	found	so	far	2	ways	of	achieving	the	above:	

1. By	using	the	maven	assembly	plugin	12–	this	is	a	maven	plugin	which	allows	
you	 to	 have	 your	 project	 packaged	 into	 tar/gz/bzip2/jar/zip/war	 files	 and	
also	allows	customization	over	directory	structures	and	contents.		

2. By	using	the	one-jar	maven	plugin	13–	this	is	another	plugin	which	packages	
all	 of	 your	 jar	 dependencies	 and	 code	 into	 one	 executable	 jar	 –	 such	 that	
users	can	just	invoke	it	via	java	–jar	…		That	is	quite	useful	if	your	project	is	
an	application	(rather	than	a	framework,	or	a	set	of	applications	etc)	

	
There	are	probably	more	than	one	way	of	deciding	which	one	of	these	2	you	should	
use	with	your	maven	setup,	but	here’s	a	quick	rule	of	thumb	from	me	on	these:	

• If	what	you’re	building	 is	 a	 Java	application	–	 as	 in	 a	 single	 java	app,	not	 a	
collection	of	apps	–	then	in	most	cases	you	want	to	go	with	the	onejar-maven-
plugin	:	if	you’re	providing	an	application	for	download	you	want	your	users	
to	 be	 able	 to	 double-click	 a	 file	 and	 start	 the	 app	 right	 away,	 and	 an	
executable	 jar	 allows	 you	 to	 do	 just	 that!	 If	 you	 distribute	 your	 app	 as	 a	
tarball	with	 directories	 for	 libraries	 and	 so	 on,	 then	 the	 script	 for	 running	
your	app	becomes	a	bit	convoluted	(you’ll	have	so	specify	 the	classpath	etc	
etc	etc)	–	using	this	plugin,	all	the	user	has	to	type	once	they	downloaded	the	
one-jar	 file	 is:	 java	–jar	/path/to/one-jar.jar	–	and	voila!	Remember,	 from	a	
user	experience	point	of	view,	it’s	important	that	your	users	get	to	use	your	
app	as	soon	as	possible	from	the	moment	they	made	the	decision	they	want	
to	give	it	a	go	–	have	them	go	through	page	after	page	of	instructions	on	how	
to	configure	and	run	your	app	loses	their	interest	in	lots	of	cases,	so	a	simple	
yet	effective	way	of	packaging	your	application	like	this	provides	a	huge	user	
experience	improvement!	

• If	however	what	you’re	providing	is	a	framework,	or	a	set	of	applications	or	
some	 libraries,	 then	 onejar-maven-plugin	 is	 probably	 not	 the	 best	 way	 –	
while	 you	might	 still	 be	 able	 to	 package	 everything	 using	 it	 (ultimately	 by	
default	it	will	create	a	jar	containing	your	application	compiled	code	AND	the	
dependency	 jars),	 the	end	result	might	not	be	 the	best	way	 to	deliver	your	
framework	to	the	users.	Typically	with	things	like	libraries	and	frameworks	
you	 probably	 have	 a	 certain	 way	 of	 setting	 up	 files	 in	 directories,	 maybe	
include	some	shell	scripts,	some	configuration	files,	some	logging	setup	–	all	
of	 this	 is	 not	 really	 possible	 with	 the	 onejar-maven-plugin,	 however	 the	
maven	assembly	plugin	allows	you	 to	setup	directories,	 copy	 files	over	and	
then	 finally	 package	 everything	 into	 a	 tarball,	 or	 zip	 file,	 jar	 or	 all	 sorts	 of	
other	“standard”	package	formats.		

	
There	is	potentially	a	3rd	way	of	packaging	your	application	as	well,	however,	this	is	
a	 rather	 “specialized”	way	of	doing	 it:	RPM!	There	 is	 a	maven	 rpm	plugin	14which	
allows	you	to	package	your	project	into	an	rpm	–	however,	obviously	doing	so	limits	
your	 distribution	 to	 Linux	 distros;	 if	 your	 project	 is	 specifically	 targeted	 at	 Linux	
(CentOS,	RedHat,	etc)	then	you	might	want	to	consider	this	–	however,	we	won’t	go	
into	details	about	this	plugin	here.	
	
In	the	case	of	aws-version-mgmt,	since	this	is	a	command	line	application,	I’ve	gone	
down	 the	 route	 of	 onejar-maven-plugin	 –	 as	 such,	 here’s	 an	 outline	 of	 the	maven	
configuration	I’ve	used	for	it	together	with	some	explanations:	
	
	 <repositories>...</repositories>	
	 ...	
	 <!--	Declare	the	repository	where	to	download	the	onejar	plugin	from	-->	
	 <pluginRepositories>	
	 	 <pluginRepository>	
	 	 	 <id>onejar-maven-plugin.googlecode.com</id>	
	 	 	 <url>http://onejar-maven-
plugin.googlecode.com/svn/mavenrepo</url>	
	 	 </pluginRepository>	
	 </pluginRepositories>	
	 ...	
	 <build>	
	 	 ...	
	 	 <!--	use	the	onejar	plugin	to	package	everything	-->	
	 	 <plugin>	
	 	 	 <groupId>org.dstovall</groupId>	

<artifactId>onejar-maven-plugin</artifactId>	
	 	 	 <version>1.4.4</version>	
	 	 	 <executions>	
	 	 	 	 <execution>	
	 	 	 	 <configuration>	
	 <!--	Set	the	mainClass	so	when	user	launches	java	-jar	one-jar.jar	this	class	gets	
executed	-->	 	 	 	 	
	 <mainClass>com.liviutudor.aws.versionmgmt.Program</mainClass>	
	 <!--	Set	to	true	to	have	the	package	phase	generate	the	one-jar	file	-->	
	 <attachToBuild>true</attachToBuild>	
	 	 	 	 </configuration>	
	 	 	 	 <goals>	
	 	 	 	 	 <goal>one-jar</goal>	
	 	 	 	 </goals>	
	 	 	 	 </execution>	
	 	 	 </executions>	
	 	 </plugin>	
	 	 ...	

	 </build>	
	
As	you	can	see,	there’s	nothing	really	to	the	configuration	–	apart	from	declaring	the	
main	class	to	be	set	 in	the	manifest	(this	 is	the	class	which	gets	called	when	using	
java	–jar	in	the	command	line),	and	attaching	the	plugin	to	the	maven	package	phase	
there’s	nothing	else	to	be	done.		
	

Uploading	Files	to	SourceForge	
	
Having	decided	on	the	way	to	package	your	project	(one-jar,	tarball,	zip	etc),	and	set	
up	your	pom	accordingly,	 it’s	finally	time	to	now	look	at	uploading	this	package	to	
the	SourceForge	“Files”	section.	Of	course	you	can	do	this	manually,	via	FTP	and	all	
sorts	of	other	mechanisms,	however,	as	I	said	before,	all	of	this	(packaging	+	upload	
+	version	rev’ing)	needs	to	be	done	automatically	by	your	build	process,	so	it’s	very	
easy	 to	maintain.	And	all	of	 this	 can	be	done	by	using	 the	maven	release	plugin	15	
together	with	the	maven	wagon16	build	extension.		
	
The	maven	release	plugin	already	does	the	donkey	work	for	us:		

• Runs	 a	 full	 build	 (you	 can	 configure	what	 phases	 to	 run,	 but	 typically	 you	
want	 to	do	a	 full	 clean	package,	 so	run	unit	 tests	and	generate	 the	package	
file)	

• Updates	your	pom	version	–	it	takes	the	user	through	a	series	of	prompts	but	
it	 makes	 some	 smart	 assumptions	 about	 it,	 so	 in	 most	 cases	 you	 can	 just	
accept	the	default	values	it	suggests	

• Tags	your	source	control	repository	with	the	version	number	
• Uploads	your	package	file(s)	to	your	maven	repo	

So	based	on	this,	all	that	is	needed	is	really	to	configure	the	bits	regarding	the	source	
control	integration	and	package	upload.		
		
The	SVN	/	source	control	integration	setup	has	already	been	done	previously	when	
we	 set	 up	 the	 <scm>	 element	 of	 the	 project.	 Also,	 we	 have	 touched	 on	 the	
<distributionManagement>	 element	 too	 –	 this	 defines	 the	 url	 where	 your	 maven	
artifacts	are	being	uploaded	when	you	go	through	a	maven	release.	As	you	can	see	it	
has	2	components:	<repository>	and	<site>	 --	at	 this	stage	 it	 is	 the	<repository>	bit	
we	are	interested	in,	since	this	is	where	your	artifacts	will	end	up	being	uploaded.	
	
<distributionManagement>	
	 <repository>	
	 <id>sf-net-repository</id>	
	 <url>scpexe://shell.sf.net/home/frs/project/a/aw/awsversionmgmt/mave
n</url>	
	 </repository>	
	 <site>	
	 <id>awsversionmgmt.sf.net</id>	

	 <url>scpexe://shell.sf.net/home/project-
web/awsversionmgmt/htdocs</url>	
	 </site>	
</distributionManagement>	
	
In	order	to	use	SCP	/	SSH	for	uploading	files,	we	need	to	simply	reference	the	Maven	
Wagon	extension	in	the	build:	
	
<build>	
<extensions>	
	 <extension>	
	 	 <groupId>org.apache.maven.wagon</groupId>	
	 	 <artifactId>wagon-ssh</artifactId>	
	 	 <version>1.0</version>	
	 </extension>	
</extensions>	
	
and	finally	configure	the	maven	release	plugin	as	well	–	which	pretty	much	consists	
of	 including	 it	 in	 the	 <plugins>	 sections	 of	 your	 pom	 and	 setting	 up	 a	 bunch	 of	
properties	–	in	the	case	of	aws-version-mgmt	project	this	looks	like	this:	
	
<plugins>	
...	
<plugin>	
	 <groupId>org.apache.maven.plugins</groupId>	
	 <artifactId>maven-release-plugin</artifactId>	
	 <version>2.4.1</version>	
	 <configuration>	
	 	 <!—what	goals	to	run	during	the	release	-->	
	 	 <preparationGoals>clean	verify	install</preparationGoals>	

<!—if	you’re	releasing	snapshots,you	want	this	to	set	to	true	to	avoid	
releasing	 the	 same	 snapshot	 version	 twice	 with	 different	 code;	 it	 simply	
generates	an	extra	date/time	stamp	to	the	version	-->	

	 	 <allowTimestampedSnapshots>true</allowTimestampedSnapshots>	
	 </configuration>	
</plugin>	
</plugins>	
	
Now	 with	 this	 set	 up,	 you	 can	 simply	 do	 the	 usual	 mvn	 release:prepare,	 mvn	
release:perform	 and	 you’ll	 see	 that	 auto-magically	 your	 one-jar	 file	 gets	 uploaded	
(after	your	application	artifact	jar	too!)	and	the	Download	button	will	automatically	
point	to	it.	Also,	your	svn	repo	gets	tagged	and	pom	gets	updated!	
	

References	and	Links	
	
Throughout	the	book	there	are	a	few	terms	and	software	packages	mentioned,	this	
chapter	is	meant	to	provide	more	information	about	these.	
	
	
																																																								
1	Maven	 –	 a	 Java	 build	 tool	 from	 Apache	 Software	 Foundation;	 visit	 the	 project	
website	for	more	information:	http://maven.apache.org/		
2	Henry	Ford	–	the	founder	of	Ford	Motor	Company,	see	this	article	on	Wikipedia	for	
details:	http://en.wikipedia.org/wiki/Henry_Ford		
3 	Read	 more	 about	 the	 versioning	 feature	 in	 S3	 here:	
http://aws.amazon.com/about-aws/whats-new/2010/02/08/versioning-feature-
for-amazon-s3-now-available/		
4 	You	 can	 read	 the	 blog	 post	 I’m	 referring	 to	 following	 this	 link:	
http://liviutudor.com/2013/02/27/utility-for-version-enabled-aws-s3-buckets/		
5 	The	 Amazon	 SDK	 for	 Java	 documentation	 is	 freely	 available	 at	
http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/index.html		
6 	The	 Apache	 Commons	 CLI	 provides	 an	 API	 for	 parsing	 the	 command	 line	
parameters.	 Read	 more	 about	 it	 here:	
http://commons.apache.org/proper/commons-cli/		
7	When	talking	about	“web	space”	and	“web	site”	in	sourceforge,	the	differences	are	
rather	 subtle	 and	 can	 be	 confusing	 at	 first:	 the	 web	 space	 is	 a	 directory	 that	
sourceforge	creates	off	 it’s	http://sourceforge.net/projects/	directory	–	and	this	 is	
the	space	intended	mostly	for	the	developers,	project	admins,	etc	of	the	project.	This	
is	where	things	like	ticketing,	source	code,	wiki	etc	are	made	available.	The	website	
of	 the	project	 is	 rather	 intended	 to	be	used	by	 the	users	 of	 your	projects	 –	 these	
guys	 are	 quite	 often	 not	 interested	 in	 design	 issues	 being	 discussed	 by	 your	
developers,	or	what’s	going	to	be	plugged	into	the	next	release.	They	want	to	see	a	
bunch	 of	 “HOW	TO”	 documents,	 FAQ’s	 and	 quite	 likely	 a	 download	 button.	While	
there’s	 nothing	 from	 preventing	 a	 developer	 publishing	 the	 same	 information	 on	
both	the	web	space	and	the	website,	the	envisaged	targeted	audience	is	different	for	
both.		
8 	Oracle’s	 Java	 coding	 conventions	 can	 be	 found	 here:	
http://www.oracle.com/technetwork/java/codeconv-138413.html		
9 	Read	 more	 about	 checkstyle	 on	 the	 project	 website	 (yes,	 on	 sourceforge!):	
http://checkstyle.sourceforge.net/		
10	FindBugs’	website:	http://findbugs.sourceforge.net/		
11	PMD	(“Project	Mess	Discovery”)	website:	http://pmd.sourceforge.net/		
12	Maven	 assembly	 plugin	 project	 page:	 http://maven.apache.org/plugins/maven-
assembly-plugin/		
13	The	onejar-maven-plugin	project	page:	http://code.google.com/p/onejar-maven-
plugin/		
14	Maven	RPM	Plugin	project	page:	http://mojo.codehaus.org/rpm-maven-plugin/		

																																																																																																																																																																					
15 	Maven	 release	 plugin	 project	 page:	 http://maven.apache.org/maven-
release/maven-release-plugin/		
16	Maven	Wagon	is	a	transport	abstraction	plugin	for	maven	–	read	more	about	it	on	
the	project	page:	http://maven.apache.org/wagon/		

